Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.810
1.
J Appl Oral Sci ; 32: e20230412, 2024.
Article En | MEDLINE | ID: mdl-38747807

OBJECTIVE: Studies have highlighted numerous benefits of ozone therapy in the field of medicine and dentistry, including its antimicrobial efficacy against various pathogenic microorganisms, its ability to modulate the immune system effectively, reduce inflammation, prevent hypoxia, and support tissue regeneration. However, its effects on dental extraction healing remain to be elucidated. .Therefore, this study aimed to evaluate the effects of systemically administered ozone (O3) at different doses in the healing of dental extraction sockets in rats. METHODOLOGY: To this end, 72 Wistar rats were randomly divided into four groups after extraction of the right upper central incisor: Group C - control, no systemic treatment; Group OZ0.3 - animals received a single dose of 0.3 mg/kg O3; Group OZ0.7 - a single dose of 0.7 mg/kg O3; and Group OZ1.0 - a single dose of 1.0 mg/kg O3, intraperitoneally. In total, six animals from each group were euthanized at 7, 14, and 21 days after the commencement of treatment. Bone samples were harvested and further analyzed by descriptive histology, histomorphometry, and immunohistochemistry for osteocalcin (OCN) and tartrate-resistant acid phosphatase (TRAP) protein expression. RESULTS: All applied doses of O3 were shown to increase the percentage of bone tissue (PBT) after 21 days compared to group C. After 14 days, the OZ0.7 and OZ1.0 groups showed significantly higher PBT when compared to group C. The OZ1.0 group presented the most beneficial results regarding PBT among groups, which denotes a dose-dependent response. OCN immunostaining was higher in all groups at 21 days. However, after seven and 14 days, the OZ1.0 group showed a significant increase in OCN immunostaining compared to C group. No differences in TRAP+ osteoclasts were found between groups and time points. CONCLUSION: Therefore, O3 therapy at higher doses might be beneficial for bone repair of the alveolar socket following tooth extraction.


Immunohistochemistry , Osteocalcin , Ozone , Random Allocation , Rats, Wistar , Tartrate-Resistant Acid Phosphatase , Tooth Extraction , Tooth Socket , Wound Healing , Animals , Ozone/pharmacology , Tooth Socket/drug effects , Wound Healing/drug effects , Tartrate-Resistant Acid Phosphatase/analysis , Osteocalcin/analysis , Time Factors , Male , Reproducibility of Results , Treatment Outcome , Reference Values
2.
Ulus Travma Acil Cerrahi Derg ; 30(5): 323-327, 2024 May.
Article En | MEDLINE | ID: mdl-38738676

BACKGROUND: We investigated the utility of specific biomarkers-namely, c-terminal telopeptide (CTX), n-telopeptide (NTX), deoxypyridinoline (DPD), and tartrate-resistant acid phosphatase (TRAP)-compared to conventional diagnostic methods. We hy-pothesized that these novel biomarkers could hold substantial value in the diagnosis, treatment, and monitoring of osteoporosis. METHODS: The study was conducted over a three-year period, from January 1, 2020, to January 1, 2023. We enrolled a total of 520 patients aged 50 years or older who had been diagnosed with osteoporosis. Patients undergoing steroid treatments, which are known to contribute to osteoporosis, were excluded from the study. Additionally, we carefully selected and matched a control group consisting of 500 patients based on demographic characteristics relevant to the diagnosis of osteoporosis. This meticulous selection process resulted in a comprehensive cohort comprising 1,020 patients. Throughout the study, patients were closely monitored for a duration of one year to track the occurrence of pathological fractures and assess their overall prognosis. RESULTS: As a result of our rigorous investigation, we identified CTX, NTX, DPD, and TRAP as pivotal biomarkers that play a crucial role in evaluating bone health, monitoring treatment effectiveness, and detecting pathological fractures in the context of osteoporosis. CONCLUSION: Our study underscores the significance of these biomarkers in advancing the diagnosis and management of osteo-porosis, offering valuable insights into the disease's progression and treatment outcomes.


Biomarkers , Bone Remodeling , Collagen Type I , Osteoporosis , Humans , Biomarkers/blood , Female , Osteoporosis/diagnosis , Male , Middle Aged , Aged , Collagen Type I/blood , Peptides/blood , Peptides/urine , Tartrate-Resistant Acid Phosphatase/blood , Amino Acids/blood , Osteoporotic Fractures/diagnosis , Fractures, Spontaneous/diagnosis , Fractures, Spontaneous/etiology
3.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 95-101, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650149

Osteoporosis is a common chronic bone disorder in postmenopausal women. Ginsenosides are primary active components in ginseng and the effects of various ginsenoside variants in osteoporosis treatment have been widely revealed. We planned to explore the impact of ginsenoside Rc on bone resorption in an osteoporosis rat model. We used ovariectomized rats to assess the potential impact of ginsenoside Rc on osteoporosis. µ-CT was implemented for analyzing the microstructure of the distal left femur in rats. H&E staining together with Masson staining were applied for bone histomorphometry evaluation. ELISA kits were implemented to detect serum concentrations of TRACP-5b, OCN, CTX, as well as PINP. Ginsenoside Rc treatment lessened the serum levels of TRACP-5b as well as CTX, while increasing serum levels of OCN, and PINP of OVX rats. Moreover, we found that ginsenoside Rc contributed to the synthesis of type I collagen via increasing Col1a1 and Col1a2 levels in femur tissues of ovariectomized rats. Our findings also revealed that ginsenoside Rc activated the TGF-ß/Smad pathway by increasing TGF-ß as well as phosphorylated Smad2/3 protein levels. Ginsenoside Rc alleviates osteoporosis in rats through promoting the TGF-ß/Smad pathway.


Ginsenosides , Osteoporosis , Ovariectomy , Rats, Sprague-Dawley , Signal Transduction , Transforming Growth Factor beta , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Animals , Female , Osteoporosis/drug therapy , Osteoporosis/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Femur/drug effects , Femur/metabolism , Femur/pathology , Smad Proteins/metabolism , Rats , Collagen Type I/metabolism , X-Ray Microtomography , Tartrate-Resistant Acid Phosphatase/metabolism , Osteocalcin/metabolism , Osteocalcin/blood , Disease Models, Animal , Procollagen/metabolism , Procollagen/blood
4.
Cells ; 13(8)2024 Apr 20.
Article En | MEDLINE | ID: mdl-38667330

BACKGROUND: Gaucher disease (GD) is caused by glucocerebrosidase (GCase) enzyme deficiency, leading to glycosylceramide (Gb-1) and glucosylsphingosine (Lyso-Gb-1) accumulation. The pathological hallmark for GD is an accumulation of large macrophages called Gaucher cells (GCs) in the liver, spleen, and bone marrow, which are associated with chronic organ enlargement, bone manifestations, and inflammation. Tartrate-resistant acid phosphatase type 5 (TRAP5 protein, ACP5 gene) has long been a nonspecific biomarker of macrophage/GCs activation; however, the discovery of two isoforms of TRAP5 has expanded its significance. The discovery of TRAP5's two isoforms revealed that it is more than just a biomarker of macrophage activity. While TRAP5a is highly expressed in macrophages, TRAP5b is secreted by osteoclasts. Recently, we have shown that the elevation of TRAP5b in plasma is associated with osteoporosis in GD. However, the role of TRAP isoforms in GD and how the accumulation of Gb-1 and Lyso-Gb-1 affects TRAP expression is unknown. METHODS: 39 patients with GD were categorized into cohorts based on bone mineral density (BMD). TRAP5a and TRAP5b plasma levels were quantified by ELISA. ACP5 mRNA was estimated using RT-PCR. RESULTS: An increase in TRAP5b was associated with reduced BMD and correlated with Lyso-Gb-1 and immune activator chemokine ligand 18 (CCL18). In contrast, the elevation of TRAP5a correlated with chitotriosidase activity in GD. Lyso-Gb-1 and plasma seemed to influence the expression of ACP5 in macrophages. CONCLUSIONS: As an early indicator of BMD alteration, measurement of circulating TRAP5b is a valuable tool for assessing osteopenia-osteoporosis in GD, while TRAP5a serves as a biomarker of macrophage activation in GD. Understanding the distinct expression pattern of TRAP5 isoforms offers valuable insight into both bone disease and the broader implications for immune system activation in GD.


Gaucher Disease , Protein Isoforms , Tartrate-Resistant Acid Phosphatase , Gaucher Disease/metabolism , Gaucher Disease/genetics , Humans , Tartrate-Resistant Acid Phosphatase/metabolism , Protein Isoforms/metabolism , Protein Isoforms/genetics , Female , Male , Middle Aged , Adult , Bone Density , Macrophages/metabolism , Biomarkers/metabolism , Biomarkers/blood , Isoenzymes/metabolism , Isoenzymes/genetics
5.
Tissue Eng Regen Med ; 21(4): 587-594, 2024 Jun.
Article En | MEDLINE | ID: mdl-38451425

BACKGROUND: Mesenchymal stem cells (MSCs) have been highlighted as a potent therapeutic option for conditions with excessive osteoclast activity such as systemic and local bone loss in rheumatic disease. In addition to their immunomodulatory functions, MSCs also directly suppress osteoclast differentiation and activation by secreting osteoprotegerin (OPG) and IL-10 but the underlying mechanisms are still to be clarified. Tumor necrosis factor-stimulated gene-6 (TSG-6) is a potent anti-inflammatory molecule that inhibits osteoclast activation and has been shown to mediate MSC's immunomodulatory functions. In this study, we aimed to determine whether adipose tissue-derived MSC (ADMSC) inhibits the differentiation from osteoclast precursors to mature osteoclasts through TSG-6. METHODS: Human ADMSCs were co-cultured with bone marrow-derived monocyte/macrophage (BMMs) from DBA/1J or B6 mouse in the presence of osteoclastogenic condition (M-CSF 10 ng/mL and RANKL 10 ng/mL). In some co-culture groups, ADMSCs were transfected with siRNA targeting TSG-6 or OPG to determine their role in osteoclastogenesis. Tartrate-resistant acid phosphatase (TRAP) activity in culture supernatant and mRNA expression of osteoclast markers were investigated. TRAP+ multinucleated cells and F-actin ring formation were counted. RESULTS: ADMSCs significantly inhibited osteoclast differentiation under osteoclastogenic conditions. Suppression of TSG-6 significantly reversed the inhibition of osteoclast differentiation in a degree similar to that of OPG based on TRAP activity, mRNA expression of osteoclast markers, and numbers of TRAP+ multinucleated cell and F-actin ring formation. CONCLUSION: This study demonstrated that ADMSCs inhibit osteoclast differentiation through TSG-6 under osteoclastogenic conditions.


Adipose Tissue , Cell Adhesion Molecules , Cell Differentiation , Mesenchymal Stem Cells , Osteoclasts , Osteoclasts/metabolism , Osteoclasts/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Cell Differentiation/drug effects , Humans , Animals , Adipose Tissue/cytology , Adipose Tissue/metabolism , Mice , Cell Adhesion Molecules/metabolism , Osteoprotegerin/metabolism , Coculture Techniques , Mice, Inbred C57BL , Osteogenesis/drug effects , Tartrate-Resistant Acid Phosphatase/metabolism , Macrophages/metabolism , Macrophages/cytology
6.
J Bone Miner Metab ; 42(2): 264-270, 2024 Mar.
Article En | MEDLINE | ID: mdl-38512458

INTRODUCTION: Denosumab, a fully human anti-RANKL monoclonal antibody, is a widely used osteoporosis treatment that is increasingly being used in patients undergoing dialysis; however, its long-term efficacy and safety in these patients remain unknown. MATERIALS AND METHODS: This observational study comprised individuals aged ≥ 20 years undergoing hemodialysis and receiving denosumab. After denosumab administration, we analyzed the long-term changes in bone mineral density (BMD) and levels of bone turnover markers (BTMs) and calcium. RESULTS: The study included 45 patients who have been receiving denosumab for a median duration of 3.8 (interquartile range, 2.5-6.7) years. Tartrate-resistant acid phosphatase 5b (TRACP-5b) levels decreased from a median of 595 (434-778) mU/dL at baseline to 200 (141-430) mU/dL after 6 months of denosumab administration (P < 0.001) and remained low thereafter. Similarly, bone-specific alkaline phosphatase (BAP) levels decreased from a median of 18.2 (15.9-25.8) µg/L at baseline to 12.4 (9.9-15.6) µg/L after 6 months (P < 0.001) and remained low thereafter. Meanwhile, BMD, as assessed with dual energy X-ray absorptiometry and measured at the distal 1/3 of the radius, did not decrease (0.465 ± 0.112 g/cm2 at baseline vs. 0.464 ± 0.112 g/cm2 after administration; P = 0.616). Regarding hypocalcemia, corrected calcium levels reached were the lowest at 7 days after administration and normalized within 30 days. CONCLUSION: The study showed long-term suppression of TRACP-5b and BAP levels and sustaining BMD after denosumab administration over an extended period in patients undergoing hemodialysis.


Bone Density Conservation Agents , Bone Density , Humans , Denosumab/pharmacology , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/therapeutic use , Calcium/pharmacology , Tartrate-Resistant Acid Phosphatase , Bone Remodeling , Alkaline Phosphatase , Renal Dialysis , Biomarkers
7.
J Bone Miner Res ; 39(4): 484-497, 2024 May 02.
Article En | MEDLINE | ID: mdl-38477789

Rebound bone loss following denosumab discontinuation is an important clinical challenge. Current treatment strategies to prevent this fail to suppress the rise and overshoot in osteoclast-mediated bone resorption. In this study, we use a murine model of denosumab treatment and discontinuation to show the temporal changes in osteoclast formation and activity during RANKL inhibition and withdrawal. We show that the cellular processes that drive the formation of osteoclasts and subsequent bone resorption following withdrawal of RANKL inhibition precede the rebound bone loss. Furthermore, a rise in serum TRAP and RANKL levels is detected before markers of bone turnover used in current clinical practice. These mechanistic advances may provide insight into a more defined window of opportunity to intervene with sequential therapy following denosumab discontinuation.


Stopping denosumab, a medication commonly used to improve bone mass by blocking formation of bone resorbing osteoclasts, leads to a rebound loss in the bone which was gained during treatment. Current strategies to prevent this bone loss fail in most cases as they are unable to prevent the rise and overshoot in bone resorption by osteoclasts. Thie stems from an incomplete understanding of how osteoclasts behave during denosumab treatment and after treatment is discontinued. We use a mouse model of this phenomenon to show how osteoclast formation and activity changes throughout this process. We show that increases in the processes that drive the formation of osteoclasts can be detected in the circulation before bone loss occurs. These findings could therefore provide insight into a targeted 'window of opportunity' to intervene and prevent the rebound bone loss following stopping denosumab in patients.


Bone Resorption , Denosumab , Osteoclasts , RANK Ligand , Animals , Osteoclasts/metabolism , Osteoclasts/drug effects , RANK Ligand/antagonists & inhibitors , RANK Ligand/metabolism , Denosumab/pharmacology , Mice , Bone Resorption/pathology , Bone Resorption/drug therapy , Bone Resorption/blood , Time Factors , Tartrate-Resistant Acid Phosphatase/metabolism , Female , Mice, Inbred C57BL , Biomarkers/metabolism , Biomarkers/blood
8.
J Oral Sci ; 66(2): 102-106, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38417878

PURPOSE: Alveolar osteitis (dry sockets) is a painful condition characterized by a limited immune response. It is typically caused by the removal of blood clots from extracted tooth sockets, which leads to the fermentation of trapped food remnants by oral bacteria in the cavities, producing high concentrations of short-chain fatty acids (SCFAs). This study examined the effects of SCFAs on immunity and bone metabolism. METHODS: Mouse macrophage Raw264.7 cells were treated with oral bacteria supernatants or SCFA mixtures, and inducible nitric oxide synthase (iNOS) levels were determined by western blot. The same cells were treated with SCFA mixtures in the presence of receptor activator of nuclear factor-kappa B ligand (RANKL), and osteoclast-like cells were counted. MC3T3-E1 cells were treated with SCFA mixtures and stained with alizarin red S. RESULTS: Raw264.7 cells treated with oral bacterial culture supernatants of Porphyromonas gingivalis and Fusobacterium nucleatum inhibited lipopolysaccharide (LPS)-induced iNOS production, likely due to SCFA content. SCFA mixtures mimicking these supernatants inhibited the number of RANKL-induced tartrate-resistant acid phosphatase (TRAP)-positive cells and MC3T3-E1 cell mineralization. CONCLUSION: These data suggest that SCFAs produced by P. gingivalis and F. nucleatum may reduce the inflammatory response and mildly induce mineralization of the alveolar walls. These results may contribute to the understanding of alveolar osteitis.


Dry Socket , Mice , Animals , Dry Socket/metabolism , Osteoclasts , Porphyromonas gingivalis , Tartrate-Resistant Acid Phosphatase/metabolism , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology
9.
Peptides ; 175: 171177, 2024 May.
Article En | MEDLINE | ID: mdl-38354953

Trichophyton mentagrophytes is a zoophilic dermatophyte that can cause dermatophytosis in humans and animals. Antimicrobial peptides (AMPs) are considered as a promising agent to overcome the drug-resistance of T. mentagrophytes. Our findings suggest that cationic antimicrobial peptide (ACP5) not only possesses stronger activity against T. mentagrophytes than fluconazole, but also shows lower toxicity to L929 mouse fibroblast cells than terbinafine. Notably, its resistance development rate after resistance induction was lower than terbinafine. The present study aimed to evaluate the fungicidal mechanism of ACP5 in vitro and its potential to treat dermatophyte infections in vivo. ACP5 at 1 ×MIC completely inhibited T. mentagrophytes spore germination in vitro. ACP5 severely disrupts the mycelial morphology, leading to mycelial rupture. Mechanistically, ACP5 induces excessive ROS production, damaging the integrity of the cell membrane and decreasing the mitochondrial membrane potential, causing irreversible damage in T. mentagrophytes. Furthermore, 1% ACP5 showed similar efficacy to the commercially available drug 1% terbinafine in a guinea pig dermatophytosis model, and the complete eradication of T. mentagrophytes from the skin by ACP5 was verified by tissue section observation. These results indicate that ACP5 is a promising candidate for the development of new agent to combat dermatophyte resistance.


Arthrodermataceae , Tinea , Humans , Mice , Animals , Guinea Pigs , Terbinafine/pharmacology , Terbinafine/therapeutic use , Trichophyton , Tinea/drug therapy , Antimicrobial Peptides , Antifungal Agents/pharmacology , Tartrate-Resistant Acid Phosphatase/pharmacology
10.
Arch. argent. pediatr ; 122(1): e202303031, feb. 2024. ilus, tab
Article En, Es | BINACIS, LILACS | ID: biblio-1525821

La espondiloencondrodisplasia con desregulación inmune relacionada a ACP5 (SPENCDI #607944, por la sigla de spondyloenchondrodysplasia with immune dysregulation y el número que le corresponde en OMIM, Online Mendelian Inheritance in Man) es una displasia inmuno-ósea poco frecuente con manifestaciones heterogéneas y gravedad variable. Presenta lesiones espondilometafisarias, disfunción inmune y compromiso neurológico. Se reportan aspectos clínicos, radiológicos y genéticos de cuatro niñas con SPENCDI en un hospital pediátrico. Todas presentaron manifestaciones esqueléticas y tres de ellas enfermedad inmunológica grave. Se encontró en tres pacientes la variante probablemente patogénica c.791T>A; p.Met264Lys en homocigosis, y en una paciente las variantes c.791T>A; p.Met264Lys y c.632T>C; p.lle211Thr (variante de significado incierto con predicción patogénica según algoritmos bioinformáticos) en heterocigosis compuesta en ACP5. La presencia de la variante repetida c.791T>A sugiere la posibilidad de un ancestro en común en nuestra población. El reconocimiento y diagnóstico de esta entidad es importante para lograr un oportuno abordaje, que deberá ser multidisciplinario, orientado hacia la prevención de posibles complicaciones.


Spondyloenchondrodysplasia with immune dysregulation related to ACP5 (SPENCDI, OMIM number 607944) is an uncommon immune-skeletal dysplasia with heterogeneous manifestations and variable severity. It is characterized by spondylar and metaphyseal lesions, immune dysfunction, and neurological involvement. Here we report the clinical, radiological and genetic aspects of 4 girls with SPENCDI treated at a children's hospital. They all had skeletal manifestations and 3 developed severe immune disease. In 3 patients, the likely pathogenic variant c.791T>A; p.Met264Lys (homozygous mutation) was observed, while 1 patient had variants c.791T>A; p.Met264Lys and c.632T>C; p.lle211Thr (variant of uncertain significance with pathogenic prediction based on bioinformatics algorithms) caused by a compound heterozygous mutation in ACP5. The repeated presence of variant c.791T>A suggests the possibility of a common ancestor in our population. The recognition and diagnosis of this disorder is important to achieve a timely approach, which should be multidisciplinary and aimed at preventing possible complications.


Humans , Female , Child, Preschool , Child , Autoimmune Diseases , Immunologic Deficiency Syndromes/complications , Tartrate-Resistant Acid Phosphatase/genetics
11.
Int J Mol Sci ; 25(4)2024 Feb 09.
Article En | MEDLINE | ID: mdl-38396794

Rosavin, a phenylpropanoid in Rhodiola rosea's rhizome, and an adaptogen, is known for enhancing the body's response to environmental stress. It significantly affects cellular metabolism in health and many diseases, particularly influencing bone tissue metabolism. In vitro, rosavin inhibits osteoclastogenesis, disrupts F-actin ring formation, and reduces the expression of osteoclastogenesis-related genes such as cathepsin K, calcitonin receptor (CTR), tumor necrosis factor receptor-associated factor 6 (TRAF6), tartrate-resistant acid phosphatase (TRAP), and matrix metallopeptidase 9 (MMP-9). It also impedes the nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), c-Fos, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK) signaling pathways and blocks phosphorylation processes crucial for bone resorption. Moreover, rosavin promotes osteogenesis and osteoblast differentiation and increases mouse runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) expression. In vivo studies show its effectiveness in enhancing bone mineral density (BMD) in postmenopausal osteoporosis (PMOP) mice, restraining osteoclast maturation, and increasing the active osteoblast percentage in bone tissue. It modulates mRNA expressions by increasing eukaryotic translation elongation factor 2 (EEF2) and decreasing histone deacetylase 1 (HDAC1), thereby activating osteoprotective epigenetic mechanisms, and alters many serum markers, including decreasing cross-linked C-telopeptide of type I collagen (CTX-1), tartrate-resistant acid phosphatase 5b (TRACP5b), receptor activator for nuclear factor κ B ligand (RANKL), macrophage-colony-stimulating factor (M-CSF), and TRAP, while increasing alkaline phosphatase (ALP) and OCN. Additionally, when combined with zinc and probiotics, it reduces pro-osteoporotic matrix metallopeptidase 3 (MMP-3), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α), and enhances anti-osteoporotic interleukin 10 (IL-10) and tissue inhibitor of metalloproteinase 3 (TIMP3) expressions. This paper aims to systematically review rosavin's impact on bone tissue metabolism, exploring its potential in osteoporosis prevention and treatment, and suggesting future research directions.


Bone Resorption , Disaccharides , Osteoclasts , Animals , Mice , Osteoclasts/metabolism , Tartrate-Resistant Acid Phosphatase/metabolism , Osteogenesis , Bone Resorption/metabolism , Cell Differentiation , NF-kappa B/metabolism , Metalloproteases/metabolism , RANK Ligand/metabolism , NFATC Transcription Factors/metabolism
12.
J Investig Med ; 72(4): 370-382, 2024 Apr.
Article En | MEDLINE | ID: mdl-38264863

Morinda officinalis polysaccharide (MOP) is the bioactive ingredient extracted from the root of Morinda officinalis, and Morinda officinalis is applied to treat osteoporosis (OP). The purpose of this study was to determine the role of MOP on human bone marrow mesenchymal stem cells (hBMSCs) and the underlying mechanism. HBMSCs were isolated from bone marrow samples of patients with OP and treated with MOP. Quantitative real-time polymerase chain reaction was adopted to quantify the expression of microRNA-210-3p (miR-210-3p) and scavenger receptor class A member 3 (SCARA3) mRNA. Cell Counting Kit-8 assay was employed to detect cell viability; Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling assay and flow cytometry were adopted to detect apoptosis; Alkaline Phosphatase (ALP) activity assay kit was applied to detect ALP activity; Western blot was executed to quantify the expression levels of SCARA3, osteogenic and adipogenic differentiation markers. Ovariectomized rats were treated with MOP. Bone mineral density (BMD), serum tartrate-resistant acid phosphatase 5b (TRACP 5b), and N-telopeptide of type I collagen (NTx) levels were assessed by BMD detector and Enzyme-linked immunosorbent assay kits. It was revealed that MOP could promote hBMSCs' viability and osteogenic differentiation and inhibit apoptosis and adipogenic differentiation. MOP could also upregulate SCARA3 expression through repressing miR-210-3p expression. Treatment with MOP increased the BMD and decreased the TRACP 5b and NTx levels in ovariectomized rats. MOP may boost the osteogenic differentiation and inhibit adipogenic differentiation of hBMSCs by miR-210-3p/SCARA3 axis.


Mesenchymal Stem Cells , MicroRNAs , Morinda , Osteoporosis , Polysaccharides , Animals , Humans , Rats , Bone Marrow/metabolism , Cells, Cultured , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , MicroRNAs/drug effects , MicroRNAs/metabolism , Morinda/chemistry , Morinda/metabolism , Osteogenesis/drug effects , Osteogenesis/genetics , Osteoporosis/drug therapy , Receptors, Scavenger/metabolism , Tartrate-Resistant Acid Phosphatase/metabolism , Polysaccharides/pharmacology , Scavenger Receptors, Class A/drug effects , Scavenger Receptors, Class A/metabolism
13.
Immunology ; 171(4): 583-594, 2024 Apr.
Article En | MEDLINE | ID: mdl-38178705

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disorder involving scarring of pulmonary tissue and a subsequent decrease in respiratory capacity, ultimately resulting in death. Tartrate resistant acid phosphatase 5 (ACP5) plays a role in IPF but the exact mechanisms are yet to be elucidated. In this study, we have utilized various perturbations of the bleomycin mouse model of IPF including genetic knockout, RANKL inhibition, and macrophage adoptive transfer to further understand ACP5's role in pulmonary fibrosis. Genetic ablation of Acp5 decreased immune cell recruitment to the lungs and reduced the levels of hydroxyproline (reflecting extracellular matrix-production) as well as histological damage. Additionally, gene expression profiling of murine lung tissue revealed downregulation of genes including Ccl13, Mmp13, and Il-1α that encodes proteins specifically related to immune cell recruitment and macrophage/fibroblast interactions. Furthermore, antibody-based neutralization of RANKL, an important inducer of Acp5 expression, reduced immune cell recruitment but did not decrease fibrotic lung development. Adoptive transfer of Acp5-/- bone marrow-derived monocyte (BMDM) macrophages 7 or 14 days after bleomycin administration resulted in reductions of cytokine production and decreased levels of lung damage, compared to adoptive transfer of WT control macrophages. Taken together, the data presented in this study suggest that macrophage derived ACP5 plays an important role in development of pulmonary fibrosis and could present a tractable target for therapeutic intervention in IPF.


Idiopathic Pulmonary Fibrosis , Lung , Animals , Mice , Tartrate-Resistant Acid Phosphatase/genetics , Tartrate-Resistant Acid Phosphatase/metabolism , Lung/pathology , Macrophages , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Fibrosis , Bleomycin/metabolism , Bleomycin/pharmacology
14.
Arch Argent Pediatr ; 122(1): e202303031, 2024 02 01.
Article En, Es | MEDLINE | ID: mdl-37382551

Spondyloenchondrodysplasia with immune dysregulation related to ACP5 (SPENCDI, OMIM number 607944) is an uncommon immune-skeletal dysplasia with heterogeneous manifestations and variable severity. It is characterized by spondylar and metaphyseal lesions, immune dysfunction, and neurological involvement. Here we report the clinical, radiological and genetic aspects of 4 girls with SPENCDI treated at a children's hospital. They all had skeletal manifestations and 3 developed severe immune disease. In 3 patients, the likely pathogenic variant c.791T>A; p.Met264Lys (homozygous mutation) was observed, while 1 patient had variants c.791T>A; p.Met264Lys and c.632T>C; p.lle211Thr (variant of uncertain significance with pathogenic prediction based on bioinformatics algorithms) caused by a compound heterozygous mutation in ACP5. The repeated presence of variant c.791T>A suggests the possibility of a common ancestor in our population. The recognition and diagnosis of this disorder is important to achieve a timely approach, which should be multidisciplinary and aimed at preventing possible complications.


La espondiloencondrodisplasia con desregulación inmune relacionada a ACP5 (SPENCDI #607944, por la sigla de spondyloenchondrodysplasia with immune dysregulation y el número que le corresponde en OMIM, Online Mendelian Inheritance in Man) es una displasia inmuno-ósea poco frecuente con manifestaciones heterogéneas y gravedad variable. Presenta lesiones espondilometafisarias, disfunción inmune y compromiso neurológico. Se reportan aspectos clínicos, radiológicos y genéticos de cuatro niñas con SPENCDI en un hospital pediátrico. Todas presentaron manifestaciones esqueléticas y tres de ellas enfermedad inmunológica grave. Se encontró en tres pacientes la variante probablemente patogénica c.791T>A; p.Met264Lys en homocigosis, y en una paciente las variantes c.791T>A; p.Met264Lys y c.632T>C; p.lle211Thr (variante de significado incierto con predicción patogénica según algoritmos bioinformáticos) en heterocigosis compuesta en ACP5. La presencia de la variante repetida c.791T>A sugiere la posibilidad de un ancestro en común en nuestra población. El reconocimiento y diagnóstico de esta entidad es importante para lograr un oportuno abordaje, que deberá ser multidisciplinario, orientado hacia la prevención de posibles complicaciones.


Autoimmune Diseases , Immunologic Deficiency Syndromes , Child , Female , Humans , Tartrate-Resistant Acid Phosphatase/genetics , Immunologic Deficiency Syndromes/complications
15.
Spine (Phila Pa 1976) ; 49(8): E100-E106, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-37339262

STUDY DESIGN: A prospective, single-center, observational study. OBJECTIVE: To explore the association between serum levels of bone turnover markers and ossification of the posterior longitudinal ligament (OPLL) in the thoracic spine. SUMMARY OF BACKGROUND DATA: The relationship between bone turnover markers, such as N-terminal propeptide of type I procollagen (PINP) or tartrate-resistant acid phosphate 5b (TRACP-5b), and OPLL has previously been examined. However, the correlation between these markers and thoracic OPLL, which is more severe than cervical-only OPLL, remains unclear. METHODS: This prospective study included 212 patients from a single institution with compressive spinal myelopathy and divided them into those without OPLL (Non-OPLL group, 73 patients) and those with OPLL (OPLL group, 139 patients). The OPLL group was further subdivided into cervical OPLL (C-OPLL, 92 patients) and thoracic OPLL (T-OPLL, 47 patients) groups. Patients' characteristics and biomarkers related to bone metabolism, such as calcium, inorganic phosphate (Pi), 25-hydroxyvitamin D, 1α,25 dihydroxyvitamin D, PINP, and TRACP-5b, were compared between the Non-OPLL and OPLL groups, as well as the C-OPLL and T-OPLL groups. Bone metabolism biomarkers were also compared after adjusting for age, sex, body mass index, and the presence of renal impairment using propensity score-matched analysis. RESULTS: The OPLL group had significantly lower serum levels of Pi and higher levels of PINP versus the Non-OPLL group as determined by propensity score-matched analysis. The comparison results between the C-OPLL and T-OPLL groups using a propensity score-matched analysis showed that T-OPLL patients had significantly higher concentrations of bone turnover markers, such as PINP and TRACP-5b, compared with C-OPLL patients. CONCLUSIONS: Increased systemic bone turnover may be associated with the presence of OPLL in the thoracic spine, and bone turnover markers such as PINP and TRACP-5b can help screen for thoracic OPLL.


Longitudinal Ligaments , Ossification of Posterior Longitudinal Ligament , Humans , Prospective Studies , Osteogenesis , Tartrate-Resistant Acid Phosphatase , Thoracic Vertebrae , Ossification of Posterior Longitudinal Ligament/complications , Biomarkers
16.
J Orthop Res ; 42(5): 1066-1073, 2024 May.
Article En | MEDLINE | ID: mdl-38044471

Rapid joint destruction caused by rapidly destructive coxarthrosis (RDC) can increase surgical complexity and intraoperative blood loss. This single-center retrospective study investigates osteoporosis-related biomarkers for early RDC diagnosis and explores new treatment targets. We included 398 hip joints from patients who underwent total hip arthroplasty, examining medical records for preoperative patient demographics, bone mineral density of the hip and lumbar spine from dual-energy X-ray absorptiometry scans, and osteoporosis-related biomarkers including TRACP-5b, total P1NP, intact parathyroid hormone, and homocysteine. We compared RDC and osteoarthritis (OA) patients, and univariate analysis showed that RDC patients were older (p < 0.001) and had lower serum levels of albumin (p < 0.001) and higher serum levels of TRACP-5b, total P1NP (p < 0.001), and homocysteine (p = 0.006). Multivariable analysis showed that the ratio of serum TRACP-5b to total P1NP had a more significant difference in RDC patients than in OA patients (p = 0.04). Serum TRACP-5b levels were negatively correlated with the time between RDC onset and blood collection, and Japanese Orthopedic Association pain score. Receiver operating characteristic curve analysis revealed that the ratio of serum TRACP-5b to total P1NP had the highest area under the curve value. This study is the first to demonstrate that the ratio of serum TRACP-5b to total P1NP-increased bone resorption that outpaces increased bone formation-is significantly elevated in patients with RDC and that TRACP-5b is higher in the early stages of RDC. Inhibiting serum levels of TRACP-5b, activated osteoclasts, during early RDC may suppress disease progression.


Bone Resorption , Osteoarthritis, Hip , Osteolysis , Osteoporosis , Humans , Tartrate-Resistant Acid Phosphatase , Osteogenesis , Retrospective Studies , Biomarkers , Homocysteine , Acid Phosphatase
17.
Clin J Am Soc Nephrol ; 19(4): 483-493, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38030558

BACKGROUND: Bone loss after kidney transplantation is highly variable. We investigated whether changes in bone turnover markers associate with bone loss during the first post-transplant year. METHODS: Bone mineral density (BMD) was measured at 0 and 12 months, with biointact parathyroid hormone, bone-specific alkaline phosphatase (BALP), intact procollagen type I N -terminal propeptide (PINP), and tartrate-resistant acid phosphatase isoform 5b (TRAP5b) measured at 0, 3, and 12 months post-transplant ( N =209). Paired transiliac bone biopsies were available in a subset ( n =49). Between-group differences were evaluated by Student's t test, Wilcoxon signed-rank test, or Pearson's chi-squared test. RESULTS: Changes in BMD varied from -22% to +17%/yr. Compared with patients with no change (±2.5%/yr), patients who gained BMD had higher levels of parathyroid hormone (236 versus 136 pg/ml), BALP (31.7 versus 18.8 µ g/L), and Intact PINP (121.9 versus 70.4 µ g/L) at time of transplantation; a greater decrease in BALP (-40% versus -21%) and Intact PINP (-43% versus -13%) by 3 months; and lower levels of Intact PINP (36.3 versus 60.0 µ g/L) at 12 months post-transplant. Patients who lost BMD had a less marked decrease, or even increase, in Intact PINP (+22% versus -13%) and TRAP5b (-27% versus -43%) at 3 months and higher Intact PINP (83.7 versus 60.0 µ g/L) and TRAP5b (3.89 versus 3.16 U/L) at 12 months compared with patients with no change. If none of the biomarkers decreased by the least significant change at 3 months, an almost two-fold (69% versus 36%) higher occurrence of bone loss was seen at 12 months post-transplant. CONCLUSIONS: Bone loss after kidney transplantation was highly variable. Resolution of high bone turnover, as reflected by decreasing bone turnover markers, associated with BMD gain, while increasing bone turnover markers associated with bone loss.


Bone Density Conservation Agents , Bone Diseases, Metabolic , Kidney Transplantation , Humans , Bone Density , Kidney Transplantation/adverse effects , Parathyroid Hormone , Procollagen , Alkaline Phosphatase , Tartrate-Resistant Acid Phosphatase , Bone Remodeling , Biomarkers
18.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(10): 1706-1714, 2023 Oct 20.
Article Zh | MEDLINE | ID: mdl-37933646

OBJECTIVE: To explore the mechanism of Qingluo Tongbi formula for regulating "immune-bone erosion" in rheumatoid arthritis (RA). METHODS: Sixty-four RA patients were randomized into two groups to receive treatment with oral methotrexate or Qingluo Tongbi Formula for 12 weeks. Flow cytometry was used to analyze the changes in the percentages of CD3-CD19+, CD19+CD27 and CD19+BAFFR+B cell subpopulations in peripheral blood of the patients, and serum levels of B cell activating factor (BAFF), RANKL, RANK and osteoprotegerin (OPG) levels were detected using ELISA. Before and after the treatment, serum levels of ß-CTX, TRACP-5b, BGP, BALP, and PINP were measured with ELISA, and bone mineral density was determined with DXEA dual-energy X-ray absorptiometry. In the cell experiment, RAW264.7 cells were induced to differentiated into osteoclasts and treated with Qingluo Tongbi Formula at low-, moderate and high doses (125, 250 and 500 µg/mL, respectively) or with methotrexate (2 µg/mL) for 48 h, and the changes in the expression levels of RANKL, RANK, OPG and c-Fos were detected using Western blotting. RESULTS: The B cell subgroups in RA patients were correlated with the RANKL/RANK/OPG system. Treatment with Qingluo Tongbi Formula obviously down-regulated the percentages of the B cell subgroups, lowered serum levels of BAFF, ß-CTX and TRACP-5b, increased the levels of BGP, BALP and PINP, and improved lumbar bone density of RA patients (P<0.05); All these changes were significantly correlated with the regulation of B cell expressions (P<0.05). In RAW264.7 cells-derived osteoclasts, Qingluo Tongbi Formula significantly decreased the expressions of RANKL, RANK and c-Fos and increased the expression of OPG (P<0.05). CONCLUSION: Qingluo Tongbi Formula inhibits bone erosion in RA possibly by regulating B cell subset percentages and BAFF expression and inhibiting osteoclast differentiation via the RANKL/RANK/OPG pathway.


Arthritis, Rheumatoid , Drugs, Chinese Herbal , Humans , Arthritis, Rheumatoid/drug therapy , Drugs, Chinese Herbal/pharmacology , Methotrexate , Osteoclasts , Osteoprotegerin/metabolism , RANK Ligand/metabolism , Tartrate-Resistant Acid Phosphatase/metabolism
19.
BMC Musculoskelet Disord ; 24(1): 736, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37715167

BACKGROUND: As an indicator to evaluate the risk of fracture in diffuse idiopathic skeletal hyperostosis, the maximum number of vertebral bodies' bone cross-linked with contiguous adjacent vertebrae (max VB) was developed. This study retrospectively investigates the relationship between max VB, bone mineral density (BMD), and bone metabolic markers (BMM). METHODS: In this cross-sectional study (from April 2010 to January 2022), males (n = 114) with various max VB from the thoracic vertebra to the sacrum, measured using computed tomography scans, were selected to assess femur BMD and BMM. The association of max VB with the total type I procollagen N-terminal propeptide (P1NP), tartrate-resistant acid phosphatase 5b (TRACP-5b), and bone turnover ratio (BTR = TRACP-5b/P1NP) as well as its relationship with femur BMD with P1NP and TRACP-5b, were investigated. Furthermore, the relationship between P1NP and TRACP-5b was investigated. RESULTS: P1NP increased in proportion to max VB and TRACP-5b increased in proportion to P1NP. Moreover, BTR was inversely proportional to max VB. Finally, femur BMD was inversely proportional to P1NP and TRACP-5b. CONCLUSION: As max VB increased with P1NP-a potential osteogenesis indicator-and BTR was inversely proportional to max VB with compensatory TRACP-5b increase, max VB can be considered as a possible predictor of bone fusion.


Osteogenesis , Sacrum , Male , Humans , Cross-Sectional Studies , Retrospective Studies , Tartrate-Resistant Acid Phosphatase
20.
Support Care Cancer ; 31(9): 547, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37656213

PURPOSE: Vitamin D plays a crucial role in skeletal metabolism and holds significant importance in the pathophysiology of multiple myeloma (MM). This study aimed to determine the prevalence of vitamin D deficiency among Japanese MM patients and its correlation with clinical outcomes. METHODS: Serum 25-hydroxyvitamin D (25(OH)D) levels were assessed in 68 MM patients at a single institution in Japan, analyzing their association with clinical status, laboratory parameters including procollagen type 1 N-propeptide (P1NP) and tartrate-resistant acid phosphatase 5b (TRACP-5b), health-related quality of life (HR-QOL) scores, and overall survival. Additionally, patients with suboptimal 25(OH)D levels received cholecalciferol supplementation (1000 IU/day), and changes in laboratory parameters were monitored. RESULTS: The median 25(OH)D level was 22 ng/ml, with 32% and 51% of patients exhibiting vitamin D deficiency (< 20 ng/ml) and insufficiency (20-29 ng/ml), respectively. The 25(OH)D levels were unrelated to sex, age, MM stage, or bone lesions, but the vitamin D-deficient group showed a tendency towards lower HR-QOL scores. Among patients achieving complete remission, vitamin D supplementation increased P1NP, while TRACP-5b remained unchanged. Overall survivals from vitamin D measurement and from MM diagnosis were significantly worse in the vitamin D-deficient group compared to the vitamin D-insufficient/-sufficient group. CONCLUSION: The study identified a considerable number of Japanese MM patients with insufficient serum vitamin D levels, with one-third being deficient. Additionally, vitamin D deficiency predicted poor overall survival in Japanese MM patients. Further investigation is required to determine whether vitamin D supplementation can improve the frailty and survival of vitamin D-deficient MM patients.


Multiple Myeloma , Vitamin D Deficiency , Humans , Prevalence , Quality of Life , East Asian People , Multiple Myeloma/drug therapy , Multiple Myeloma/epidemiology , Tartrate-Resistant Acid Phosphatase , Vitamin D Deficiency/drug therapy , Vitamin D Deficiency/epidemiology , Vitamin D
...